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This work describes a new finite element projection method for the computa-
tion of incompressible viscous flows of nonuniform density. One original idea of
the proposed method consists in factorizing the density varjzdity outside and
partly insidethe time evolution operator in the momentum equation, to prevent
spatial discretization errors in the mass conservation to affect the kinetic energy
balance of the fluid. It is shown that unconditional stability in the incremental ver-
sion of the projection method is possible provided two projections are performed
per time step. In particular, a second order accurate BDF projection method is pre-
sented and its numerical performance is illustrated by test computations and comp-
arisons. (© 2000 Academic Press
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1. INTRODUCTION

Simulating variable density incompressible flows presents the difficulty of satisfying t
property of mass conservation twice. On one hand, the mass density of each fluid par
must remain unchanged during the fluid motion, whatever the level of unsteadiness
mixing. On the other hand, the velocity field must satisfy the incompressibility constrai
which reflects the unability of pressure to do compression work. These two import:
physical characteristics are fully described by the set of incompressible Navier—Sto
equations augmented by the advection equation for the density. For the mathematical
ory of existence and uniqueness of solutions to this set of equations, we refer to Li
[10]. This theory is far from trivial, because the equations governing the motion of
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168 GUERMOND AND QUARTAPELLE

variable density but incompressible fluid constitute a mixed PDE system entangling |
perbolic, parabolic, and elliptic features. Variable density incompressible Navier—Stol
equations are important in several fields of fluid dynamics: for instance, in highly stratifi
flows, in the study of the dynamics of interfaces between fluid of different density, and
problems of inertial confinement and problems of astropysics.

For developing numerical approximations to this problem, it seems natural to exploit,
far as possible, the techniques established for the solution of constant density incompres
Navier—Stokes equations, viz., the fractional step projection method of Chorin [2, 3] a
Teman [13, 14]. For instance, this approach has been followed by Bell and Marcus [1], v
proposed a solution method based on finite differences.

Since in the past few years we have developed a finite element projection methoc
incremental type of second-order time accuracy [7, 9], we have attempted to extenc
application to variable density problems. In this paper we report on how such an extens
has been accomplished without sacrificing any of the distinctive features of the method
started from, namely, unconditional stabili€y(h®) spatial accuracy, an@(At?) accuracy
in time. Let us now comment briefly on these characteristics, separately.

As far as the stability is concerned, the main issue is to erspr@ri that the spatial
discretization errors associated with the approximate fulfillment of mass conservation d
not affect the balance of kinetic energy. Nonlinear instability can be avoided provided |
particle derivative of momentum is written in a way that accounts for density variatio
without invoking mass conservation to guarantee the energy balance. This requires wri
the density variable in the evolutionary term of the momentum equation as the product
two ,/p, one occurring outside and the other inside the time derivative operator. Realiz
that this form is suitable for not affecting the energy balance is possible by looking at
problem within a variational formulation.

Concerning the issue of the spatial accuracy, we propose a mixed finite element techn
where the density and the velocity are approximated in the same space. This choice mal
very easy to develop the new method from an existing FEM solver dedicated to the solut
of uniform density flows. In our implementation, we use helP, interpolation.

Finally, about temporal accuracy, we use an incremental fractional step technique bz
on the second order accurate BDF scheme. By analyzing the stability of the method |
way similar to that in [5], we find that, to preserve the unconditional stability in the var
able density problem, two projection steps per time step are needed. The first projec
must be performed after the time advancement of the mass conservation equation bu
fore that of the momentum equation. The variable coefficient elliptic operator of the fir
preliminary projection is found to coincide with that of the second, standard projectit
step.

The paper is organized as follows. In Section 2 we review the governing equations :
reformulate them so that the kinetic energy balance is fully uncoupled from the mass ¢
servation. In Section 3 an unconditionally stable nonincremental projection method
variable density problems is built. This step sets all the tools that are necessary for deve
ing the incremental version of the projection method. In Section 4 we build the incremer
method and show that it is unconditionally stable provided that an auxiliary pressure |
known is introduced and two projections are performed per time step. Section 5 details
introduction of a three-level BDF time stepping for reaching second order accuracy in til
and gives the complete set of equations defining the proposed algorithm. In Section 6
error estimates of the method are verified by solving a simple analytical problem; two t
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problems of Rayleigh—Taylor instability are finally considered. The last section is devo
to concluding remarks.

2. GOVERNING EQUATIONS

We are hereafter concerned with the time-dependent Navier—Stokes equations for a
whose density may vary both in space and time but which is nevertheless incompress
in the sense that each fluid particle retains its initial density during the entire subseqt
motion. In the following, the fluid domaif2 is assumed to be smooth, bounded, anc
connected in two or three dimensions.

2.1. Variable Density Navier—Stokes Equations

The equations governing the flows of interest comprise the continuity equation expres:
the mass conservation, the momentum equation accounting for the Newton second law
the kinematic constraint of solenoidality for the velocity field. These equations are expres
in terms of the primitive variables: densijty velocityu, and pressur®. The mathematical
statement of the problem is: Find> O, u, and P up to a constant (actually, up to an
arbitrary function ot only) so that

£ +V-(pu) =0,
o) 1 - (pu®U) — uViu+ VP = f, (2.1)
V.u=0,

whereu > 0 the (shear) viscosity of the fluid (assumed here to be a constanf) and

a known body force (per unit volume), possibly dependent on space, time, or both; ty

cally, in stratified flowsf = pg, g being the gravity field. We recall that - (pu @ u) =

9 (puiuj) = Uu;jdj(pu;) + puidjuj = (U - V)(pu) + puV - u. The viscous stress contri-

bution resulting from bulk viscosity is zero by the assumed incompressibility of the flow
The complete mathematical statement of the problem requires suitable boundary

initial conditions which read

elr, =a, plt=0 = o,

(2.2)
ulr = b, Ul—o = Uo,
wherea > 0 andb are respectively the density and velocity prescribed on the bounda
whereago > 0 andug are the initial distribution of density and velocity. In accordance witt
the hyperbolic character of the mass conservation equation, the pBytiofthe boundary
where the density is specified is defined by

Fn={rel|n-b(r) <0} (2.3)

wheren is the outward unit normal to the bounddry T, can in general depend on time,

namely'i, = iy (t), because of a possible variation in time of the velocity boundary datur
b = b(t). It must be stressed that, exactly as in the Navier—Stokes problem for a homo
neous fluid, neither a boundary condition nor an initial condition is required for the presst
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For the sake of simplicity, only a Dirichlet boundary condition for velocity is considere
here, but more general boundary conditions can be handled by the techniques prese
below. In particular, it is worth noticing that, for a homogeneous Dirichlet condition o
the normal component of the velocity on the eniireno boundary condition needs to be
specified for the density.

The solvability of the problem defined by the equation system (2.1) supplemented w
the boundary and initial conditions (2.2) requires the satisfaction of the conditions on
boundary and initial data for the velocity

/n~b=0, vVt >0, and V -ug=0, (2.4)
r

as well as the fulfillment of a compatibility condition between these two data,

n-Dbli—o=n-Uo|r. (2.5)

2.2. Stability of the Equation System

In the formulation that we propose, the mass conservation and momentum equation:
recast in a form that guarantees some control onLth@orm of the density and on the
kinetic energy of the fluid.

First, we observe that the theory of characteristics applied to the mass conserva
equation under the incompressibility assumption, namely,

ap

— 4+u-Vp=0,

at UV
implies that, if po(r) is such that O< o < po(r) < B, Vr € @, then it holds that 6< @ <
p(r,t) < g for anyt > 0. Moreover, multiplying the mass transport equation above by
and integrating ovef2, we obtain

ap d1l 5
—_— u- = —— :0’
/Q'OatJr/Qp Ve dtz/ﬂp

sincefQ pu-Vp= % fQ u- V(p? = 0 by integration by parts, thanks to the flow incom-
pressibility and the boundary condition for the normal component of velocity, which
assumed here and in the following to be homogeneous, namelyr = 0. As a result we
have

o€, Dllo = llpollo, (2.6)

where]| - || denotes thé-2 norm of functions defined if. Note that we needed to invoke
incompressibility to derive this identity. As a result, this property will be lost at the discre
level because the incompressibility constraint will be enforced weakly only. To avoid tf
difficulty, we rewrite the nonlinear term - Vp in the mass conservation equation in its
skew symmetric fornu - Vo + pV - u/2:

dp o
—4+u-V —V.u=0. 2.7
at+ p+2 (2.7)
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Owing to Lemma 1, it can be verified that this form of the mass conservation equat
guarantees that tHe? norm of p is constant in time without invoking incompressibility. As
a result, this property will be preserved at the discrete level.

LEMMA 1. For ¢ andv regular enough and such thatn - v = 0 we have

1
/ {(pV-V(p+—<ﬂ2V~V} =0.
Q 2

Coming now to the momentum equation, let us assume, for the sake of simplicity of
argument, that = 0. Multiplying the momentum equation hyyields

/u-a(p”)+/u-[V-<pu®u>]+u/|Vu|2=

where we have used integration by parts ahd= 0. The pressure term has disappeare
becausej'Q u- VP =0 by virtue ofV - u = 0 and ofn - u|r = 0. The first two terms can
be handled by means of the identity

(plul®)
ot

u. [3()0U)

ot +V~(pu®u)] 2{

+ V- (plu U)]
which is obtained by using the rule for the derivative of products (twice) and the me
conservation equation (once). By means of this identity and using &gain = 0 and

n-ulr = 0, we infer
dt

from which we deduce immediately thﬁtz(p|u|2)(r, t) < [Q polUg|?, an inequality that
can be expressed in the form

(oW, Hllo = llv/polollo. (2.8)

| - llo denoting also the.? norm of vector functions. Note thait,/oullo is nothing else
but the square root of the kinetic energy. Note that to derive this identity, we needec
invoke the mass conservation equation and the incompressibility of the flow. As a result,
standard form of the momentum equation cannot guarantee that the kinetic energy bal
is preserved at the discrete level, because mass conservation and incompressibility c:
be satisfied exactly when discretized. To avoid this difficulty we propose now an alternat
form of the momentum equation.

The arguments above show clearly that it is convenient to introduce the auxiliary varia
o = /p. By writing pu = oou in the momentum equation, a direct calculation, using th

identity o% = ;g‘t’ together with the mass conservation equation in its canonical for
(2.1), gives the equivalent equation
d(ou u
o (gt )+(pu'V)u+§V~(pu)—uV2u+VP:f. (2.9)

By using the vector conterpart of Lemma 1, one verifies that this alternative form of t
momentum equation yields (2.8) without invoking mass conservation norincompressibil
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As a result (2.9) will preserve exactly the kinetic energy balance at the discrete level. N
that in the particular case of uniform density the nonlinear terms in Eq. (2.9) are writt
exactly in the skew-symmetric form which is well known for yielding unconditional stability
in the incompressible Navier—Stokes equations [13].

In conclusion, the complete system of equations for developing unconditionally sta
integration schemes for variable density incompressible flows is written in the form

ap P
s . IV.u=0
ot +u V,o+2V u ,
d(ou) u 2
o ot +(,ou-V)u+§V-(pu)—MV u+VP=f, (2.10)

V.-u=0,

whereo = ,/p, by definition.

3. NONINCREMENTAL PROJECTION METHOD FOR VARIABLE DENSITY

To realize the main differences between the classical projection method for a homc
neous fluid and the projection method proposed here for variable-density incompress
flows, we concentrate first on the simplest fractional step method, that is, the original (n
incremental) version of the method. This method is characterized by a time-splitting er
of first order, which renders it useless for developing projection schemes of second ol
accuracy in time. As shown in [5], second order accuracy in time can be achieved o
by using the incremental technique, also known as the pressure correction method (t
discussed in Section 4). For the sake of simplicity of the arguments, in the present sec
we restrict ourselves to the nonincremental method, which allows us to establish featt
present also in the more accurate incremental method. We now briefly restate some
viously established results [9, 11, 12] and introduce the necessary notations. In partic
we focus on the difference in terms of functional setting existing between the two subst
of the method, namely the viscous step and the projection step. This distinction lead
consider two different vector spaces for approximating the intermediate velocity and |
end-of-step velocity.

3.1. The Nonincremental Scheme for Variable Density Flows

The main idea of the fractional step projection method is the splitting of the viscosity fro
the incompressibility, which are dealt with in two separate subsequent steps. To implen
the same idea in the context of variable-density flows, we insist on the idea of decoupl
the mass conservation equation also, solving this equation in the first fractional step of
method.

Let us sep® = po, 0° = ,/po andu® = uo. By considering an implicit treatment of the
unknownp and an explicit account of the advection velocity (semi-implicit scheme), th
time discretization of the transport mass equation gives
j— pn

1
X +Un'v,0n+l+§(V'un),0n+1=0,

3.1
P, =att, G
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wherea"?! = a(tn,1). Once p"*! has been determined, defied*! = /p"+1. Then,
solve the following problem of the viscous (advection—diffusion) step to determine t
intermediaté velocity u"+?,

oMHiynt+l _ 50N 1
ot _ ;LVZU”+1+ (pn+lun . V)un+1 + E[V . (pn+lun)]un+1 — fn+l’

At
ur‘l+1|r — bn+l (32)

whereb™?! = b(t,1). Finally, having determined the intermediate velocify?, we have
to perform the projection step,

N+l _ o n+1
ny1Y u
At

v.i"t=0, (3.3)

n- Gn+1|r -n- be—l’

P + VP =,

to determine the end-of-step velocii{}*! and the pressur"™+2. It is important to note
the structural difference existing between the viscous step (3.2) and the projection pl
of (3.3) of the calculation. The former constitutes an elliptic boundary value problem f
an intermediate velocit§"*! accounting for viscosity and convection, whereas the latte
represents an essentially inviscid problem which determines the end-of-step valgdity
together with a suitable approximation of the presdefé! so that the incompressibility
constraintis satisfied. As a consequence, boundary conditions of a differentkind are imp
on the velocity unknowns that are calculated in the two half-steps. Accordingly, the t
operatorsv- andV- occurring in the two steps are distinct since they act on vector fielc
belonging to spaces which are endowed with very different regularities, naféty, the
intermediate velocity andH (or possiblyL?) for the end-of-step velocitg.

The time integration scheme chosen in the momentum equation is fully implicit for tl
viscous term and semi-implicit for the advection term. This scheme is unconditiona
stable; i.e., it avoids any restriction on the time sidpas stated formally by the following
proposition:

PrROPOSITIONL. For any At > 0, the solution(p", u", P"),n=1,2, ..., of the semi-
discrete fractional-step equatioii3.1)~3.3)with f = 0 satisfies the stability estimate

n
1 1 1,2 k+12 2
1™ o < llpollo.  lo™ U™ E + 2 At Y~ [[VUH[Z < [loouoll3.
k=0

Proof. We firstmultiply (3.1) by 2tp"+! andintegrate ove®. Usingn - u"|r = 0, Yu",
and the identity 8(a — b) = a? + (a — b)? — b?, we have

™G+ 112" = o"lIg — 11p™1I5 = O,

and therefore

1
o™ 1lo < Il eollo-

1We useu to indicate the intermediate velocity for notational simplicity, since, as will become clear later, th
velocity is the only one necessary in the final computational algorithm.
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Multipling the first equation (3.2) of the viscous step (with= 0, for simplicity) by
2Atu™?! and integrating ovef2, usingu"|r = 0, Yu", we have

”0n+1un+1”% + ”On+lun+l _ Unﬂn”% _ ”O,n[]n”(Z) + ZAIH”VUH-H'”S —0.

Multiplying the momentum equation (3.3) of the projection step Ay@' ! and using both
V - 0" =0andn- 0" = 0, we deduce

1nn+1)2 1,nn+1 1y2 1 1,2
o™ MRS A oA — u™ 15 = o™ G.
Then, adding the last two equations, we obtain

”O,n+1un+1 _ O,nan”(Z) + 2At/L||VUn+1||(2) + ”O,n-‘rlarH—l”(Z)

4 ||O,n+l(0n+l _ un+l)||(2) — ”O_nﬂn”g’
and therefore
lo ™G + 28t VU HE < [lo"0"15.
The desired result follows easilym

3.2. Elliptic Pressure Equation and Elimination of the End-of-Step Velocity

Dividing the first equation of the projection step (3.3) ! and then applyin&~ to
the resulting equation, we obtain the following Neumann boundary value problem for 1
pressureP™ 1,

~ 1 -
-V < n+1VPn+1) _ —(At)*lv . un+1’
g (3.4)
pnt+l

=0,
an

r

where we have use¥ - u = V - u (owing to the fact that in mathematical ter/®s is an
extension oiV-). The weak form of the elliptic problem for pressure in the incompressibl
step reads

- 1

L+l C n+1
Vuw € Hl(Q), (Vw, s _(w, Vv -u") _ (Vw,u )

At At

6 Pn+1> —

OnceP™1 is known, the end-of-step velocity is given by the explicit relation

At
pn+l

0n+1 — ur‘H—l _ 6Pr‘l+1' (35)

Note that, insofar as the pressure solution of the Poisson-like equation abovelis in
V P"1 belongs toL?; as a resulti™? shouldnot be expectedh priori to have more
regularity than that oH®" (which is lower than that ofi?).
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The important point is now that the discontinuous (distributional) end-of-step veloci
0" can be made to disappear completely from the computational algorithm to be imy
mented. In fact, using

~ At -
0"=u"—- —VP"
0
in the evolutionary term of the momentum equation of the viscous step (3.2), we obtair
Un+1un+l — o
At
oMyt _ gn [un _ M@Pn]
on

At

n+1

n+1; n+1 ngn
o u —o'u

=0 +——VP"
At on

n+1, ,n+1 _ n+1 nyn

u u -

=£ +—VP"
At on

This result can be substituted into the momentum equation of the viscous step. As a
sequence, the three uncoupled problems to be solved in the nonincremental fractional
projection method for variable density flows are rewritten here in their final form:

n+l _ .n 1
p p un_vpn-kl_’_i(v_un)pn-kl:o’
,0n+l|1“» — an+1;
pMuMtt — oM lenyn — VAL L (M L gL
At

1 n+1,,n n+1 On+1 n n+1

un-ﬁ-l|F — bn+1.
v 1 - n+1 -1 n+1

V(A VP = —n v,

pret (3.8)
an |

3.3. Weak Form of the Equations

Let us introduce a finite element approximatignc H? for the densityon, Xon C H})
for the intermediate velocity,, andNy, C H? for the pressur@,, each pressure field being
defined up to a constant.

The weak formulation of the mass conservation step (3.6) reads: Fdr, fmd,o”+l Yh
such thatp ™|, = a"* and such that, for all, € Y, with vy, = 0,

v M Vol Z(v. n+1) _ 3.9
h, At + { vn,up - Vop ( Uh) =u (3.9)

Of course, the solution of the discrete equation (3.9) presents the well-known difficult
pertaining to any Galerkin finite element approximation to hyperbolic problems. To avc
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the spurious spatial oscillations induced by the Galerkin technique, we have used a
stabilization procedure proposed in [6]. This technigue basically amounts to a two-le
decomposition of the finite element spa¥gto add a nonlinear diffusion term to the
equation (3.9) as follows

plr1]+l — plrw] n+1 n+1 n .n
(vh, At> + <vh, up - Vorp (V up) on ) = bn (vh, ofs oR),
whereby (vh, pn, pn) is a trilinear form of ordehk+1 whenpy, is smoothk being the order of
interpolation of the density. For a detailed description of this subgrid stabilization technig
the reader is referred to [6].

From the solutiono™ we computes’™* = |/ pi*™™. Then, the weak formulation of
the advection—diffusion step (3.7) reads: For 0, findul** e Xy such that, for all
Vh € Xoh,

n+1, n+1 n+1_n,,n
v P Uy = — 0y 0hU,
’ At

) T V) + (v (508 V)

n+1
+5 (v, [V (ohHup)Juptt) = —(vh, C’(’;—ﬁVP,?> + (Vh, . (3.10)

NI =

The projection step has a unique expression only once the functional space for the ¢
of-step velocity is chosen. As shown in [4], many options are possible; one of the simpl
consists in selectlngn+l in Xp + V Np. Given this particular choice, it can be proven that
the operatoth, the discrete counterpart ¥, coincides exactly with the restriction td,
of the gradient operator (in terms of distributions); as a result, the spatially discrete vers
of the projection step takes the following form: Foe 0, find P“+1 € Ny, such that, for
all wy, € Ny,

<th, 1n+1VP”+1> = —(A)(wh, V- uptt), (3.11)
In[on "]

where the variable coefficie;aﬂ+l in the elliptic operator has been replaced by its injectior
Ih[p““] into the discrete spaddy, of the pressure variable.

Note that, by virtue of ther- and skew symmetric form of the momentum equation
the spatially discrete equations of the proposed projection method inherit directly the se
stability properties as those of the spatially continuous problem.

4. INCREMENTAL PROJECTION METHOD FOR VARIABLE DENSITY

We turn now to the incremental version of the projection method, which has been dem
strated to be a possible way for developing second order accurate truly projection sche
for simulating incompressible viscous flows. Our goal is to obtain a scheme that presel
the unconditional stability of the nonincremental scheme, considered in the previous ¢
tion. The extension of the incremental projection method established for homogene
incompressible flows to the variable density case is however not immediate because o
presence of the weigh/2"*1(x) in the equation of the projection step.
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4.1. Pressure Adaptation Step for Variable Density

To deal with such a difficulty it is necessary to introduce an intermediate step betwe
the mass conservation step and the viscous step. In this step, starting from an approxi
version of the pressure denoted @Y obtained in the projection step of the previous time
level, one computes a corrected presdeife! solution of the elliptic equation

~ 1 - 1 ~ 1 ~
-V (pn+1vpn+ ) - _v. (qun) 4.1)

supplemented by the Neumann boundary condition

1 9Pt

19Q"
o1 gn =n

o™ an

4.2)

r
The precise role of this unconventional step will be clarified by the subsetdestability

analysis. Note that this pressure adaptation can be interpreted as a preliminary proje
step defined by the problem

R e pn+1 eQn
Uaux + L = oN+lgn’
V - Oaux = 0, (4.3)

n- l’~\|aux|1“ =0.

The equation for the viscous step of the incremental projection method is

n+1,n+1 npn
o u —o'u
an+1 At _ Mv2un+1 + (pn+lun . V)un+1

1
+5IV- (p™tuMutt = —w P L (4.4)

Un+l|[‘ — bn+1‘

Finally, the projection step of the incremental scheme is written as

0n+l —y™tt
At
v.-i"l=0, (4.5)

n- 0”+1|p -n- bn+l

pn+l + @(antl _ Pn+1) — 0’

whereP™?! has been calculated in the pressure adaptation step of the current time lev

4.2. The Incremental Scheme for Variable Density Flows

The set of equations performing one entire time step of the incremental projection met
can be obtained as in the nonincremental method by writing the projection step in the fi
of a Neumann problem for a Poisson-like equation and eliminating the end-of-step veloc
A possible scheme, based on a semi-implicit stabilized treatment of the nonlinear tern
the mass conservation equation and a unconditionally stable treatment for the momer



178 GUERMOND AND QUARTAPELLE

equation of the viscous step, would lead to the following set of four uncoupled problem

n+l _ .n 1
L +u" - V"4 Z(V-uMp™t =0,
At 2 (4.6)
pn+1|1" — an+1;
A 1 . A 1 ~
+1)
-V (pn+lVP” > =-V. (WVQ“),
4.7)
1 oP™  10Q"|
o™l an | oM an |

pn+lun+1 _ Gn+10nun

At

1
_ MVZUH+1 + (pn+lun . V)un+1 + E[V . (pn+lun)]un+1

n+1
= —VvpP™Ml_ —Oan V(Q" - P") + ", (4.8)

n+1 n+1,
u™ = b"

-V < iﬁ(Q”“ - P”“)) = —(ADH 'V U
p (4.9)
a(Qn+l _ Pn+l) _o
an e

r

4.3. Stability of the Incremental Projection Method

The proof of stability of the incremental projection method proceeds as does that of
nonincremental method but takes into account in an essential way the pressure adapt
equation (4.1). First, multiply this equation B! and integrate ovef2. Using the in-
tegration by parts and the Neumann boundary condition (4.2) we obtain, by the Schw.
inequality,

epn+1 2 epn-ﬁ-l eQn @Pn-i-l @Qn
a1 = ) =< )
’ o™l ||, <0n+1 O-n) ‘ o™l ]l o o
from which it follows immediately that
& pn+1 = QN
s LA
o™ o o 0

Then, multiplying the momentum equation (4.4) byt2"+! and integrating ove®, using
uir = 0, Yu", we have

lo™ UG + o™ — o A7 — [lo"a"

+2At,u||Vu”+1||S=—2At/ untl. wpntt
Q

Multiplying the momentum equation (4.5) of the projection steqbﬁ P™1y/p"t and
usingV - 0"t = 0, we deduce that

_i @Pnﬂ .yt +2 ﬁ n+l ) @(Qnﬂ _ Pn+1) -0
At Jq o +1 -

on
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from which, using again the identitya2a — b) = a? + (a — b)?> — b?, we obtain

@Qﬂ-&-l 2

ontl

_i %Pn-&-l.un-&-l_ ‘

At

e PrH—l

ontl

=0.

2 B ‘ 6(Qn+l _ Pn+1) 2

ontl

0 ‘

0 0

Using the inequality established betwe@iP"1)/o"*1 and(V Q") /o we obtain

L2 [ gpm gy [V e @™ - u
At o+l 0 (A1)?
‘ @PnﬁLl 2 ’ eQn 2
oh+l 0 oh O-

Finally, multlplylng the first equation of the projection step (4.5), this time by @+,
and usingV - 0" = 0 andn - 0"*!| = 0, we obtain

1an+1)2 1/n 1 1\ 12 1 1,2
o™ E + [l @™ — uMh 1§ = (o™ uS.

Adding now the three relations so obtained, the second one being multipligst ¥ one

finally infers that
2 2

Qn+l 2
R + 2Atp || VU2 < [lo"0")|3 + (At)

ohtl

n
” n+1n I’H~1|| +(At)2 UQ

As a result we have proved:

PrOPOSITION2. For anyAt > 0, the solution(p", u", P"),n=1, 2, ..., of the incre-
mental projection methoth.6)—(4.9) with f = 0 satisfies the stability estimate

2
ot 2uAt Z IV 13 < lloouoll3
k=0

Qn+1

|| I"H—l n+1
ohtl

0’0 0

5. BDF SECOND-ORDER INCREMENTAL PROJECTION METHOD

The incremental projection method introduced in Sections 4.1 and 4.2 has a sect
order time-splitting error but to obtain a scheme of second-order accuracy in time i
necessary to replace the two-level semi-implicit time integration algorithm used in the m
conservation and viscous steps by a second-order accurate time stepping method. Follc
our experience with the projection method for homogeneous incompressible flows [5,
we adopt the three-level BDF method. To this aim, we introduce the linearly extrapola
velocity field at the new time level by means of the definition

uMtt = 2u" — "L, (5.1)

Then, we consider the second-order accurate BDF time integration of the mass conserv
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equation

3pn+1 _ 4pn + pnfl
2At

1
+uMl. vt 4 5(V- umth pt = o, (5.2)

Similarly, the momentum equation of the viscous step is integrated in time by the sa
three-level BDF method, which solves the equation

30n+1un+l _ 40'”0” + Un—lanfl
2At

Gn+1 _ Mvzun+l + (pn-&-lug-&-l . V)un+1

1
+ 5[V . (pn+lu:|+l)]un+1 — —V Pn+1 + fn+1' (53)
Finally, the time advancement in the projection step is achieved by means of the equat

n+1

30"t — 3un+t
it T

o +V(QM— pMthy =0 (5.4)

Once the projection step is recast into the form of an elliptic equation for the press
increment and the end-of-step velocity*! is eliminated, the complete set of uncoupled
problems to be solved in the BDF incremental projection method assumes the form

3 n+1 n+1 1 4:0n — pn—l
= u . V n+1 - V . un+1 n+1 - "7
P AU P+ 2( « P AL

2At

)

5.5
pn+l|r_ — an+l. ( )
~ 1 . 1 ~ 1 ~
-V - (pn+lvpn+ ) =-V. (WVQn>’
(5.6)
1 9P™  13Q"|
o™l 9n | oM on |
3pn+1 1
N U™l ;LVzunH + (pn+1u2+1 . V)un+1 + é[V . (pn+1u2+1)]un+1
— %O_n+10nun _ 271’[Un+10_n71un—1_|_]cr1-4—1 _ VPnJrl
(5.7)
_4O_n+1 " pn an+1 n1 pnot
aor V(Q = P+ o VQT - P,
un+l|r — bn+l,
_6 A 1 @(QnJrl _ Pn+1) — _iv . un+1
pn+1 2At ’
(5.8)

9 ( Qn+l _ Pn+l)

an

r

6. NUMERICAL RESULTS

All the numerical results reported hereafter have been obtained Wsig, finite
elements.
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6.1. Error Estimates

To verify the theoretical ((At)?) accuracy of the three-level BDF projection method,
we have tested it against the analytical solution in the unit cjr¢le 1

p(r,t) = pa(r, 0 —sint),
u(r,t) = (—yX + xy) cost, (6.1)

P(r,t) = sinx sinysint,

wherep1(r, 0) is an arbitrary function. In the tests, we usedr, «) = 2+ r cosa. The
fields p(r, t) andu(r, t) satisfy the mass conservation equation identically ardt) is
solenoidal. The momentum equation is satisfied by the body force defined by

Frt) = <(ysint — xcogt)p(r,t) + cosx siny sint ) 62)

—(xsint + ycogt)p(r, t) + sinx cosy sint

The computation have been performed for @ < 1. The convergence results are plotted
in Fig. 1. We have measured the maximum in time olthaorm of the errors of all variables.
The mesh has been chosen fine enough so that the consistency error in space is signifi
smaller than that in time. The second-order convergence with respadtitoverified in
the range M1 < At < 0.2.

1.0x10™! : T r r =
! Pressure
Density
o\;ei;)cily
—
1.0x10724 o stope2
slope |
1.0x107 P
1.0x1074 i
1.0x1073 r T r r r
0.001 0.01 0.1 1

FIG. 1. Maximum in time of the error in th&? norm for different time steps.
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6.2. A Low Atwood Number Problem

As a first test case we have computed the development of a Rayleigh—Taylor insta
ity in the viscous regime. Our starting point is the problem documented by Tryggvas
[15]. This problem consists of two layers of fluid initially at rest in the gravity field in
Q =]-d/2,d/2[x] — 2d, 2d[. The initial position of the perturbed interface #gx) =
—0.1d cog27x/d). The heavy fluid is above and the density ratio is 3. so that the Atwoc
number is 0.5 according to Tryggvason’s definitionsA{ omax — Omin)/ (Pmax + Pmin)- The
transition between the two fluids is regularized by means of the law

p(X,y,t=0)

Pmin

y —n(x)
=2+ tanh(m) .
The governing equations are made dimensionless by using the following refergpges:
for density,d for length, andd®/?/g%/? for time, whereg is the gravity field, so that the
reference velocity id*/?g%/2, and the Reynolds number is defined byRenind®?g%2/ ..
Assuming the symmetry of the initial condition is maintained during the time evolutiol
the computational domain has been restricted td}@[x] — 2d, 2d[. A no-slip condition
is enforced at the bottom and top walls while symmetry is imposed on the two vertic
sides.

The time evolution of the interface of the density field for R&.000 is plotted in Fig. 2
attimes 1, 1.5,1.75, 2, 2.25, 2.5 in the time scale of Tryggvason which is related to ours
tryg = t+/At. We show the computation on two grids with 21,051 and 30&88odes to
give an idea of the convergence with respect to the spatial discretization. We have chc
Atyyg =5 x 10~%. The solutions on the two meshes are consistent in that they show simi
structures and differ only in fine details at large time.

To further assess the sensitivity of the method to spatial resolution and to verify that
artificial viscosity is much smaller than the physical viscosity we have solved the sal
problem for Re= 5000. In Fig. 3, we show the evolution of the interface computed usin
two meshes composed of 30,189 and 49,B7 hodes, respectively. First, by comparing
the solutions obtained for Re 1000 and Re= 5000 on the grid composed of 30,1B9
nodes, we clearly see that the artificial viscosity is much smaller than the physical o
since the two sets of figures are significantly different. Second, by comparing the soluti
at Re= 5000 on the two grids, we see that they are in very good agreement in the e
stage of the time evolutioft < 1.75). Some noticeable differences occur at later times an
consist in the development of structures within the main vortex that are more complex
the fine mesh than on the coarse one. When comparing the solutiors2b, we observe
some disagreement in the shape of the roll-up of the rising bubble, but fair agreemer
the overall shape (external and internal) of the falling bubble. A tentative explanation
the delay in the formation of the roll-up of the rising bubble is given at the end of the ne
section.

We compare now the viscous solutions, 4000 and Re= 5000, with the inviscid
one computed in [15]. In Fig. 4, we show the position of the interface of the rising al
falling bubble as a function of time. The solid line is the inviscid results from the fine
mesh in [15, Fig. 6(a)]. The positions predicted by the projection method fer R@00 and
Re = 5000 are almost coincident and are in fair agreement with the reference values.
notice though that the velocity of the falling bubble is somewhat higher in our calculatio
than in [15]. The computational domain used in [15Fis=]—d/2,d/2[x] — d, d[; as a
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FIG. 2. Re=1000; density ratio 3. The grid is composed of 21,0%Inodes (top) and 30,188, nodes
(bottom). The initial amplitude is 10% of the wavelength. The interface is shown attimes 1, 1.5, 1.75, 2, 2.25,
2.5 (density contours.A < p < 1.6).

result, the asymptotic velocity of the falling bubble in the inviscid simulation is reduce
because of the presence of the lower no-through flow boundary.

Coming to the comparison of the vortex structure, there is satisfactory agreemen
the global characteristics of the flow between the viscous solutions and the inviscid
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FIG. 3. Re= 5000; density ratio 3. The grid is composed of 30,8Modes (top) and 49,57F, nodes
(bottom). The initial amplitude is 10% of the wavelength. The interface is shown attimes 1, 1.5, 1.75, 2, 2.25,
2.5 (density contours.A < p < 1.6).

[15, Fig. 4], especially in the early stage. Note however that the roll-up of the the me
vortex in the present calculation does not develop since the singularity at the center of
vortex is removed by viscous dissipation.

Allthese results indicate that an accurate and detailed prediction of such a flow thb
and Re> 5000 is a difficult task, at least for the proposed projection method. In any ca:
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FIG. 4. Position of rising and falling bubbles versus time. Solid line: inviscid computations from Tryggvasc
[15]. Symbols denote results by projection methdd:Re = 1000; x: Re = 5000.

note that our Re= 5000 solution is so different from the inviscid one reported in [15] tha
we face the question of whether the infinite Reynolds limit of the viscous solution shot
be equal to the inviscid solution. In this respect, we recall that “Birkhoff has speculated t
the initial-value problem [for inviscid stratified flows] might be ill-posed [as a consequen
of the fact that] the growth rate of an infinitely small unstable wave is proportional to ti
square root of its wave number,” as reported by Tryggvason [15]. As a result, the auth
knowledge seems to leave the question of the existence of a smooth inviscid solution
large times open.

6.3. A High Atwood Number Problem

To complete the set of comparisons, we have run the test case described in [1].
geometry is the same as in the previous test case. The density ratio is 7=s0.78
(corresponding to the value 0.875 using the definition of the Atwood number in [1]). T|
perturbation of the interface igx) = —0.01d cog27 x/d) and the transition between the
two fluids is regularized by means of the following law:

po(X, y) F(v— n(X)>
— 4+ 3tanh 2—"7 ).
Pmin 0.01d

The location of the interface at times 1, 1.5, 2, 2.5, 3, 3.5, 3.75, 4, 4.25 is shown in Fic
on two grids composed of 30,189 and 49,%smodes, respectively. From the qualitative
point of view, the two solutions exhibits the same structures. The main difference cons
in a small time delay in the roll-up of the rising bubble that prompts different interactiol
between the two vortices at large times. On the coarse mesh, there is a strong interac
whereas on the fine grid the two vortices develop almost independently. Note that in b
cases the two vortices seem to have self-similar behaviors in the early stages of t
development. By inspecting the two solutions at time 1.5, we see that more Fourier mc
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FIG. 5. Re= 1000; density ratio 7. The grid is composed of 30,8odes (top) and 49,57F, nodes
(bottom). The initial amplitude is 1% of the wavelength. The interface is shown attimes 1, 1.5, 2, 2.5, 3, 3.5, 3.
4, and 4.25 (density contours2 p < 4.).

are active on the fine mesh than on the coarse one. This can be understood in the lig
the aforementioned Birkhoff’'s conjecture. In fact, in the early stage of the evolution t
viscous effects are negligible and small scale perturbations are produced from the pertu
initial data by nonlinear interactions. The finer the mesh, the larger the spectrum of availz
unstable modes. By virtue of the linear stability argument of Birkhoff, the smaller the sce
of the unstable modes the higher their growth rate. Because our numerical scheme
negligible artificial damping, small unstable modes are rapidly amplified. As a result,
t = 1.5 we distinguish four structures on the interface for the coarse grid whereas f
are present for the fine mesh. Note that, as observed by Tryggvason [15, p. 268], s
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of these vortices merge into one big vortex. Actually, three vortices out of four merge

the coarse mesh whereas four out of five merge on the fine grid. This mechanism 1
explain the anticipated formation of the secondary vortex on the coarse mesh. Note

that this argument can also explain the delay in the formation of the secondary vortex
we observed on the previous test case when comparing the coarse and the fine soluti
Re = 5000.

We have chosen this test with the hope of reproducing the results of [1]. We must admit
our solution and that of [1] are quite different. The main reason for this difference is that
our simulation small unstable modes develop at the early stage of the time evolution whe
these modes seem absent in the computation reported in [1]. It is likely that the comple
different treatments of the nonlinear inertial terms by the proposed unconditionally sta
finite element method and by the referred Godunov-based approach are at the origin o
discrepancy. The clarification of this issue is left for future investigations.

7. CONCLUSIONS

In this work, we have extended the incremental projection method to the case of incc
pressible viscous flows with nonuniform density. We have recast the momentum equa
in a new manner to guarantee that the spatial discretization errors associated with the
isfaction of the mass conservation cannot affect the balance of the kinetic energy of
fluid. The proposed form allows for developing unconditionally stable projection schernr
with the condition of incompressibility replaced by an elliptic equation for pressure, with
variable coefficient depending on the density. A second-order accurate projection sch
has been obtained which is based on performing two projections per time step and usi
three level BDF scheme for the time integration of the mass conservation and momen
equations. The spatial approximation is performed by means of Lagrangian finite elem
with IP, interpolation for density and velocity aftjy interpolation for pressure.

To verify the correctness of the method, it has been applied to two test cases previo
considered in the literature. These problems consist in simulating the evolution of
Rayleigh—Taylor instability of the interface between fluids of different densities. While fi
a low density ratio (Atwood numbes 0.5) the results of the new projection method in the
range Rex~ 1000 are in agreement with the inviscid computations [15] in the early stages
vortex formation and roll-up, for a high density ratio (Atwood numb).75) substantial
differences are found with the results provided by the finite difference projection meth
of Bell and Marcus [1]. The analysis of spatial convergence conducted for the test prob
at the higher Atwood number indicates that the proposed method is accurate and reli
enough for considering the computed solutions worth of attention for further comparisc
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