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This work describes a new finite element projection method for the computa-
tion of incompressible viscous flows of nonuniform density. One original idea of
the proposed method consists in factorizing the density variablepartly outside and
partly inside the time evolution operator in the momentum equation, to prevent
spatial discretization errors in the mass conservation to affect the kinetic energy
balance of the fluid. It is shown that unconditional stability in the incremental ver-
sion of the projection method is possible provided two projections are performed
per time step. In particular, a second order accurate BDF projection method is pre-
sented and its numerical performance is illustrated by test computations and comp-
arisons. c© 2000 Academic Press
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1. INTRODUCTION

Simulating variable density incompressible flows presents the difficulty of satisfying the
property of mass conservation twice. On one hand, the mass density of each fluid particle
must remain unchanged during the fluid motion, whatever the level of unsteadiness and
mixing. On the other hand, the velocity field must satisfy the incompressibility constraint,
which reflects the unability of pressure to do compression work. These two important
physical characteristics are fully described by the set of incompressible Navier–Stokes
equations augmented by the advection equation for the density. For the mathematical the-
ory of existence and uniqueness of solutions to this set of equations, we refer to Lions
[10]. This theory is far from trivial, because the equations governing the motion of a
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variable density but incompressible fluid constitute a mixed PDE system entangling hy-
perbolic, parabolic, and elliptic features. Variable density incompressible Navier–Stokes
equations are important in several fields of fluid dynamics: for instance, in highly stratified
flows, in the study of the dynamics of interfaces between fluid of different density, and in
problems of inertial confinement and problems of astropysics.

For developing numerical approximations to this problem, it seems natural to exploit, as
far as possible, the techniques established for the solution of constant density incompressible
Navier–Stokes equations, viz., the fractional step projection method of Chorin [2, 3] and
Teman [13, 14]. For instance, this approach has been followed by Bell and Marcus [1], who
proposed a solution method based on finite differences.

Since in the past few years we have developed a finite element projection method of
incremental type of second-order time accuracy [7, 9], we have attempted to extend its
application to variable density problems. In this paper we report on how such an extension
has been accomplished without sacrificing any of the distinctive features of the method we
started from, namely, unconditional stability,O(h3) spatial accuracy, andO(1t2) accuracy
in time. Let us now comment briefly on these characteristics, separately.

As far as the stability is concerned, the main issue is to ensurea priori that the spatial
discretization errors associated with the approximate fulfillment of mass conservation does
not affect the balance of kinetic energy. Nonlinear instability can be avoided provided the
particle derivative of momentum is written in a way that accounts for density variations
without invoking mass conservation to guarantee the energy balance. This requires writing
the density variableρ in the evolutionary term of the momentum equation as the product of
two
√
ρ, one occurring outside and the other inside the time derivative operator. Realizing

that this form is suitable for not affecting the energy balance is possible by looking at the
problem within a variational formulation.

Concerning the issue of the spatial accuracy, we propose a mixed finite element technique
where the density and the velocity are approximated in the same space. This choice makes it
very easy to develop the new method from an existing FEM solver dedicated to the solution
of uniform density flows. In our implementation, we use theP1–P2 interpolation.

Finally, about temporal accuracy, we use an incremental fractional step technique based
on the second order accurate BDF scheme. By analyzing the stability of the method in a
way similar to that in [5], we find that, to preserve the unconditional stability in the vari-
able density problem, two projection steps per time step are needed. The first projection
must be performed after the time advancement of the mass conservation equation but be-
fore that of the momentum equation. The variable coefficient elliptic operator of the first,
preliminary projection is found to coincide with that of the second, standard projection
step.

The paper is organized as follows. In Section 2 we review the governing equations and
reformulate them so that the kinetic energy balance is fully uncoupled from the mass con-
servation. In Section 3 an unconditionally stable nonincremental projection method for
variable density problems is built. This step sets all the tools that are necessary for develop-
ing the incremental version of the projection method. In Section 4 we build the incremental
method and show that it is unconditionally stable provided that an auxiliary pressure un-
known is introduced and two projections are performed per time step. Section 5 details the
introduction of a three-level BDF time stepping for reaching second order accuracy in time
and gives the complete set of equations defining the proposed algorithm. In Section 6 the
error estimates of the method are verified by solving a simple analytical problem; two test
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problems of Rayleigh–Taylor instability are finally considered. The last section is devoted
to concluding remarks.

2. GOVERNING EQUATIONS

We are hereafter concerned with the time-dependent Navier–Stokes equations for a fluid
whose density may vary both in space and time but which is nevertheless incompressible,
in the sense that each fluid particle retains its initial density during the entire subsequent
motion. In the following, the fluid domainÄ is assumed to be smooth, bounded, and
connected in two or three dimensions.

2.1. Variable Density Navier–Stokes Equations

The equations governing the flows of interest comprise the continuity equation expressing
the mass conservation, the momentum equation accounting for the Newton second law, and
the kinematic constraint of solenoidality for the velocity field. These equations are expressed
in terms of the primitive variables: densityρ, velocityu, and pressureP. The mathematical
statement of the problem is: Findρ > 0, u, and P up to a constant (actually, up to an
arbitrary function oft only) so that

∂ρ

∂t +∇ · (ρu) = 0,

∂(ρu)
∂t +∇ · (ρu⊗ u)− µ∇2u+∇P = f ,

∇ · u = 0,

(2.1)

whereµ > 0 the (shear) viscosity of the fluid (assumed here to be a constant) andf is
a known body force (per unit volume), possibly dependent on space, time, or both; typi-
cally, in stratified flows,f = ρg, g being the gravity field. We recall that∇ · (ρu⊗ u) =
∂ j (ρui u j ) = u j ∂ j (ρui )+ ρui ∂ j u j = (u ·∇)(ρu)+ ρu∇ · u. The viscous stress contri-
bution resulting from bulk viscosity is zero by the assumed incompressibility of the flow.

The complete mathematical statement of the problem requires suitable boundary and
initial conditions which read

ρ|0in = a, ρ|t=0 = ρ0,
(2.2)

u|0 = b, u|t=0 = u0,

wherea > 0 andb are respectively the density and velocity prescribed on the boundary,
whereasρ0 > 0 andu0 are the initial distribution of density and velocity. In accordance with
the hyperbolic character of the mass conservation equation, the portion0in of the boundary
where the density is specified is defined by

0in ≡ {r ∈ 0 | n · b(r) < 0}, (2.3)

wheren is the outward unit normal to the boundary0. 0in can in general depend on time,
namely,0in = 0in(t), because of a possible variation in time of the velocity boundary datum,
b= b(t). It must be stressed that, exactly as in the Navier–Stokes problem for a homoge-
neous fluid, neither a boundary condition nor an initial condition is required for the pressure.
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For the sake of simplicity, only a Dirichlet boundary condition for velocity is considered
here, but more general boundary conditions can be handled by the techniques presented
below. In particular, it is worth noticing that, for a homogeneous Dirichlet condition on
the normal component of the velocity on the entire0, no boundary condition needs to be
specified for the density.

The solvability of the problem defined by the equation system (2.1) supplemented with
the boundary and initial conditions (2.2) requires the satisfaction of the conditions on the
boundary and initial data for the velocity∫

0

n · b= 0, ∀t ≥ 0, and ∇ · u0 = 0, (2.4)

as well as the fulfillment of a compatibility condition between these two data,

n · b|t=0 = n · u0|0. (2.5)

2.2. Stability of the Equation System

In the formulation that we propose, the mass conservation and momentum equations are
recast in a form that guarantees some control on theL2-norm of the density and on the
kinetic energy of the fluid.

First, we observe that the theory of characteristics applied to the mass conservation
equation under the incompressibility assumption, namely,

∂ρ

∂t
+ u ·∇ρ = 0,

implies that, ifρ0(r) is such that 0< α ≤ ρ0(r) ≤ β, ∀r ∈ Ä, then it holds that 0< α ≤
ρ(r, t) ≤ β for any t > 0. Moreover, multiplying the mass transport equation above byρ

and integrating overÄ, we obtain∫
Ä

ρ
∂ρ

∂t
+
∫
Ä

ρu ·∇ρ = d

dt

1

2

∫
Ä

ρ2 = 0,

since
∫
Ä
ρu ·∇ρ = 1

2

∫
Ä

u ·∇(ρ2) = 0 by integration by parts, thanks to the flow incom-
pressibility and the boundary condition for the normal component of velocity, which is
assumed here and in the following to be homogeneous, namely,n · u|0 = 0. As a result we
have

‖ρ(·, t)‖0 = ‖ρ0‖0, (2.6)

where‖ · ‖0 denotes theL2 norm of functions defined inÄ. Note that we needed to invoke
incompressibility to derive this identity. As a result, this property will be lost at the discrete
level because the incompressibility constraint will be enforced weakly only. To avoid this
difficulty, we rewrite the nonlinear termu ·∇ρ in the mass conservation equation in its
skew symmetric formu ·∇ρ + ρ∇ · u/2:

∂ρ

∂t
+ u ·∇ρ + ρ

2
∇ · u = 0. (2.7)



A PROJECTION FEM 171

Owing to Lemma 1, it can be verified that this form of the mass conservation equation
guarantees that theL2 norm ofρ is constant in time without invoking incompressibility. As
a result, this property will be preserved at the discrete level.

LEMMA 1. For ϕ andv regular enough andv such thatn · v|0 = 0 we have∫
Ä

[
ϕv ·∇ϕ + 1

2
ϕ2∇ · v

]
= 0.

Coming now to the momentum equation, let us assume, for the sake of simplicity of the
argument, thatf = 0. Multiplying the momentum equation byu yields∫

Ä

u · ∂(ρu)

∂t
+
∫
Ä

u · [∇ · (ρu⊗ u)] + µ
∫
Ä

|∇u|2 = 0,

where we have used integration by parts andu|0 = 0. The pressure term has disappeared
because

∫
Ä

u ·∇P = 0 by virtue of∇ · u = 0 and ofn · u|0 = 0. The first two terms can
be handled by means of the identity

u ·
[
∂(ρu)
∂t
+∇ · (ρu⊗ u)

]
= 1

2

[
∂(ρ|u|2)
∂t

+∇ · (ρ|u|2u)
]
,

which is obtained by using the rule for the derivative of products (twice) and the mass
conservation equation (once). By means of this identity and using again∇ · u = 0 and
n · u|0 = 0, we infer

d

dt

∫
Ä

ρ|u|2+ 2µ
∫
Ä

|∇u|2 = 0,

from which we deduce immediately that
∫
Ä
(ρ|u|2)(r, t) ≤ ∫

Ä
ρ0|u0|2, an inequality that

can be expressed in the form

‖(√ρu)(·, t)‖0 ≤ ‖√ρ0u0‖0, (2.8)

‖ · ‖0 denoting also theL2 norm of vector functions. Note that‖√ρu‖0 is nothing else
but the square root of the kinetic energy. Note that to derive this identity, we needed to
invoke the mass conservation equation and the incompressibility of the flow. As a result, the
standard form of the momentum equation cannot guarantee that the kinetic energy balance
is preserved at the discrete level, because mass conservation and incompressibility cannot
be satisfied exactly when discretized. To avoid this difficulty we propose now an alternative
form of the momentum equation.

The arguments above show clearly that it is convenient to introduce the auxiliary variable
σ = √ρ. By writing ρu = σσu in the momentum equation, a direct calculation, using the
identity σ ∂σ

∂t = 1
2
∂ρ

∂t together with the mass conservation equation in its canonical form
(2.1), gives the equivalent equation

σ
∂(σu)
∂t
+ (ρu ·∇)u+ u

2
∇ · (ρu)− µ∇2u+∇P = f . (2.9)

By using the vector conterpart of Lemma 1, one verifies that this alternative form of the
momentum equation yields (2.8) without invoking mass conservation nor incompressibility.
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As a result (2.9) will preserve exactly the kinetic energy balance at the discrete level. Note
that in the particular case of uniform density the nonlinear terms in Eq. (2.9) are written
exactly in the skew-symmetric form which is well known for yielding unconditional stability
in the incompressible Navier–Stokes equations [13].

In conclusion, the complete system of equations for developing unconditionally stable
integration schemes for variable density incompressible flows is written in the form

∂ρ

∂t
+ u ·∇ρ + ρ

2
∇ · u = 0,

σ
∂(σu)
∂t
+ (ρu ·∇)u+ u

2
∇ · (ρu)− µ∇2u+∇P = f , (2.10)

∇ · u = 0,

whereσ = √ρ, by definition.

3. NONINCREMENTAL PROJECTION METHOD FOR VARIABLE DENSITY

To realize the main differences between the classical projection method for a homoge-
neous fluid and the projection method proposed here for variable-density incompressible
flows, we concentrate first on the simplest fractional step method, that is, the original (non-
incremental) version of the method. This method is characterized by a time-splitting error
of first order, which renders it useless for developing projection schemes of second order
accuracy in time. As shown in [5], second order accuracy in time can be achieved only
by using the incremental technique, also known as the pressure correction method (to be
discussed in Section 4). For the sake of simplicity of the arguments, in the present section
we restrict ourselves to the nonincremental method, which allows us to establish features
present also in the more accurate incremental method. We now briefly restate some pre-
viously established results [9, 11, 12] and introduce the necessary notations. In particular
we focus on the difference in terms of functional setting existing between the two substeps
of the method, namely the viscous step and the projection step. This distinction leads to
consider two different vector spaces for approximating the intermediate velocity and the
end-of-step velocity.

3.1. The Nonincremental Scheme for Variable Density Flows

The main idea of the fractional step projection method is the splitting of the viscosity from
the incompressibility, which are dealt with in two separate subsequent steps. To implement
the same idea in the context of variable-density flows, we insist on the idea of decoupling
the mass conservation equation also, solving this equation in the first fractional step of the
method.

Let us setρ0 = ρ0, σ
0 = √ρ0 andu0 = u0. By considering an implicit treatment of the

unknownρ and an explicit account of the advection velocity (semi-implicit scheme), the
time discretization of the transport mass equation gives

ρn+1− ρn

1t
+ un ·∇ρn+1+ 1

2
(∇ · un)ρn+1 = 0,

(3.1)
ρn+1|0in = an+1,
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where an+1 = a(tn+1). Onceρn+1 has been determined, defineσ n+1 =
√
ρn+1. Then,

solve the following problem of the viscous (advection–diffusion) step to determine the
intermediate1 velocityun+1,

σ n+1σ
n+1un+1− σ nûn

1t
− µ∇2un+1+ (ρn+1un ·∇)un+1+ 1

2
[∇ · (ρn+1un)]un+1 = f n+1,

(3.2)
un+1|0 = bn+1,

wherebn+1 = b(tn+1). Finally, having determined the intermediate velocityun+1, we have
to perform the projection step,

ρn+1 ûn+1− un+1

1t
+ ∇̂Pn+1 = 0,

∇̂ · ûn+1 = 0, (3.3)

n · ûn+1|0 = n · bn+1,

to determine the end-of-step velocityûn+1 and the pressurePn+1. It is important to note
the structural difference existing between the viscous step (3.2) and the projection phase
of (3.3) of the calculation. The former constitutes an elliptic boundary value problem for
an intermediate velocitŷun+1 accounting for viscosity and convection, whereas the latter
represents an essentially inviscid problem which determines the end-of-step velocityûn+1

together with a suitable approximation of the pressurePn+1 so that the incompressibility
constraint is satisfied. As a consequence, boundary conditions of a different kind are imposed
on the velocity unknowns that are calculated in the two half-steps. Accordingly, the two
operators∇· and∇̂· occurring in the two steps are distinct since they act on vector fields
belonging to spaces which are endowed with very different regularities, namely,H1for the
intermediate velocityu andHdiv (or possiblyL2) for the end-of-step velocitŷu.

The time integration scheme chosen in the momentum equation is fully implicit for the
viscous term and semi-implicit for the advection term. This scheme is unconditionally
stable; i.e., it avoids any restriction on the time step1t , as stated formally by the following
proposition:

PROPOSITION1. For any1t > 0, the solution(ρn, un, Pn), n = 1, 2, . . . , of the semi-
discrete fractional-step equations(3.1)–(3.3)with f = 0 satisfies the stability estimate

‖ρn+1‖0 ≤ ‖ρ0‖0, ‖σ n+1un+1‖20+ 2µ1t
n∑

k=0

‖∇uk+1‖20 ≤ ‖σ0u0‖20.

Proof. We first multiply (3.1) by 21tρn+1 and integrate overÄ. Usingn · un|0 = 0, ∀un,
and the identity 2a(a− b) = a2+ (a− b)2− b2, we have

‖ρn+1‖20+ ‖ρn+1− ρn‖20− ‖ρn‖20 = 0,

and therefore

‖ρn+1‖0 ≤ ‖ρ0‖0.
1 We useu to indicate the intermediate velocity for notational simplicity, since, as will become clear later, this

velocity is the only one necessary in the final computational algorithm.
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Multipling the first equation (3.2) of the viscous step (withf = 0, for simplicity) by
21tun+1 and integrating overÄ, usingun|0 = 0, ∀un, we have

‖σ n+1un+1‖20+ ‖σ n+1un+1− σ nûn‖20− ‖σ nûn‖20+ 21tµ‖∇un+1‖20 = 0.

Multiplying the momentum equation (3.3) of the projection step by 21t ûn+1 and using both
∇̂ · ûn+1 = 0 andn · ûn+1|0 = 0, we deduce

‖σ n+1ûn+1‖20+ ‖σ n+1(ûn+1− un+1)‖20 = ‖σ n+1un+1‖20.

Then, adding the last two equations, we obtain

‖σ n+1un+1− σ nûn‖20+ 21tµ‖∇un+1‖20+ ‖σ n+1ûn+1‖20
+‖σ n+1(ûn+1− un+1)‖20 = ‖σ nûn‖20,

and therefore

‖σ n+1ûn+1‖20+ 21tµ‖∇un+1‖20 ≤ ‖σ nûn‖20.

The desired result follows easily.

3.2. Elliptic Pressure Equation and Elimination of the End-of-Step Velocity

Dividing the first equation of the projection step (3.3) byρn+1 and then applyinĝ∇· to
the resulting equation, we obtain the following Neumann boundary value problem for the
pressurePn+1,

−∇̂ ·
(

1

ρn+1
∇̂Pn+1

)
= −(1t)−1∇ · un+1,

(3.4)
∂Pn+1

∂n

∣∣∣∣
0

= 0,

where we have used̂∇ · u =∇ · u (owing to the fact that in mathematical terms∇̂· is an
extension of∇̂·). The weak form of the elliptic problem for pressure in the incompressible
step reads

∀w ∈ H1(Ä),

(
∇̂w, 1

ρn+1
∇̂Pn+1

)
= − (w,∇ · u

n+1)

1t
= (∇̂w, un+1)

1t
.

OncePn+1 is known, the end-of-step velocity is given by the explicit relation

ûn+1 = un+1− 1t

ρn+1
∇̂Pn+1. (3.5)

Note that, insofar as the pressure solution of the Poisson-like equation above is inH1,

∇̂Pn+1 belongs toL2; as a result,̂un+1 shouldnot be expecteda priori to have more
regularity than that ofHdiv (which is lower than that ofH1).
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The important point is now that the discontinuous (distributional) end-of-step velocity
ûn+1 can be made to disappear completely from the computational algorithm to be imple-
mented. In fact, using

ûn = un − 1t

ρn
∇̂Pn

in the evolutionary term of the momentum equation of the viscous step (3.2), we obtain

σ n+1σ
n+1un+1− σ nûn

1t

= σ n+1
σ n+1un+1− σ n

[
un − 1t

ρn ∇̂Pn
]

1t

= σ n+1σ
n+1un+1− σ nun

1t
+ σ

n+1

σ n
∇̂Pn

= ρ
n+1un+1− σ n+1σ nun

1t
+ σ

n+1

σ n
∇̂Pn.

This result can be substituted into the momentum equation of the viscous step. As a con-
sequence, the three uncoupled problems to be solved in the nonincremental fractional step
projection method for variable density flows are rewritten here in their final form:

ρn+1− ρn

1t
+ un ·∇ρn+1+ 1

2
(∇ · un)ρn+1 = 0,

(3.6)
ρn+1|0in = an+1;

ρn+1un+1− σ n+1σ nun

1t
− µ∇2un+1+ (ρn+1un ·∇)un+1

+ 1

2
[∇ · (ρn+1un)]un+1 = −σ

n+1

σ n
∇Pn + f n+1, (3.7)

un+1|0 = bn+1;

−∇̂ ·
(

1

ρn+1
∇̂Pn+1

)
= −(1t)−1∇ · un+1,

(3.8)
∂Pn+1

∂n

∣∣∣∣
0

= 0.

3.3. Weak Form of the Equations

Let us introduce a finite element approximationYh ⊂ H1 for the densityρh,X0,h ⊂ H1
0

for the intermediate velocityuh, andNh ⊂ H1 for the pressurePh, each pressure field being
defined up to a constant.

The weak formulation of the mass conservation step (3.6) reads: Forn ≥ 0, findρn+1
h ∈ Yh

such thatρn+1
h |0in = an+1 and such that, for allvh ∈ Yh with vh|0in = 0,(

vh,
ρn+1

h − ρn
h

1t

)
+
(
vh, un

h ·∇ρn+1
h + 1

2

(
∇ · un

h

)
ρn+1

h

)
= 0. (3.9)

Of course, the solution of the discrete equation (3.9) presents the well-known difficulties
pertaining to any Galerkin finite element approximation to hyperbolic problems. To avoid
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the spurious spatial oscillations induced by the Galerkin technique, we have used a new
stabilization procedure proposed in [6]. This technique basically amounts to a two-level
decomposition of the finite element spaceYh to add a nonlinear diffusion term to the
equation (3.9) as follows

(
vh,

ρn+1
h − ρn

h

1t

)
+
(
vh, un

h ·∇ρn+1
h + 1

2

(
∇ · un

h

)
ρn+1

h

)
= bh

(
vh, ρ

n
h, ρ

n
h

)
,

wherebh(vh, ρh, ρh) is a trilinear form of orderhk+1 whenρh is smooth,k being the order of
interpolation of the density. For a detailed description of this subgrid stabilization technique
the reader is referred to [6].

From the solutionρn+1
h we computeσ n+1

h =
√
ρn+1

h . Then, the weak formulation of
the advection–diffusion step (3.7) reads: Forn ≥ 0, find un+1

h ∈ Xbn+1,h such that, for all
vh ∈ X0,h,

(
vh,

ρn+1
h un+1

h − σ n+1
h σ n

h un
h

1t

)
+ µ(∇vh,∇un+1

h

)+ (vh,
(
ρn+1

h un
h ·∇

)
un+1

h

)
+ 1

2

(
vh,
[
∇ · (ρn+1

h un
h

)]
un+1

h

) = −(vh,
σ n+1

h

σ n
h

∇Pn
h

)
+ (vh, f

n+1). (3.10)

The projection step has a unique expression only once the functional space for the end-
of-step velocity is chosen. As shown in [4], many options are possible; one of the simplest
consists in selectinĝun+1

h in Xh +∇Nh. Given this particular choice, it can be proven that
the operator∇̂h, the discrete counterpart of̂∇, coincides exactly with the restriction toNh

of the gradient operator (in terms of distributions); as a result, the spatially discrete version
of the projection step takes the following form: Forn ≥ 0, find Pn+1

h ∈ Nh such that, for
all wh ∈ Nh,

(
∇wh,

1

Ih
[
ρn+1

h

]∇Pn+1
h

)
= −(1t)−1

(
wh,∇ · un+1

h

)
, (3.11)

where the variable coefficientρn+1
h in the elliptic operator has been replaced by its injection

Ih[ρn+1
h ] into the discrete spaceNh of the pressure variable.

Note that, by virtue of theσ - and skew symmetric form of the momentum equation,
the spatially discrete equations of the proposed projection method inherit directly the same
stability properties as those of the spatially continuous problem.

4. INCREMENTAL PROJECTION METHOD FOR VARIABLE DENSITY

We turn now to the incremental version of the projection method, which has been demon-
strated to be a possible way for developing second order accurate truly projection schemes
for simulating incompressible viscous flows. Our goal is to obtain a scheme that preserves
the unconditional stability of the nonincremental scheme, considered in the previous sec-
tion. The extension of the incremental projection method established for homogeneous
incompressible flows to the variable density case is however not immediate because of the
presence of the weight 1/ρn+1(x) in the equation of the projection step.
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4.1. Pressure Adaptation Step for Variable Density

To deal with such a difficulty it is necessary to introduce an intermediate step between
the mass conservation step and the viscous step. In this step, starting from an approximate
version of the pressure denoted byQn obtained in the projection step of the previous time
level, one computes a corrected pressurePn+1 solution of the elliptic equation

−∇̂ ·
(

1

ρn+1
∇̂Pn+1

)
= −∇̂ ·

(
1

σ n+1σ n
∇̂Qn

)
, (4.1)

supplemented by the Neumann boundary condition

1

σ n+1

∂Pn+1

∂n

∣∣∣∣
0

= 1

σ n

∂Qn

∂n

∣∣∣∣
0

. (4.2)

The precise role of this unconventional step will be clarified by the subsequentL2 stability
analysis. Note that this pressure adaptation can be interpreted as a preliminary projection
step defined by the problem

ûaux+ ∇̂Pn+1

ρn+1
= ∇̂Qn

σ n+1σ n
,

∇̂ · ûaux= 0, (4.3)

n · ûaux|0 = 0.

The equation for the viscous step of the incremental projection method is

σ n+1σ
n+1un+1− σ nûn

1t
− µ∇2un+1+ (ρn+1un ·∇)un+1

+ 1

2
[∇ · (ρn+1un)]un+1 = −∇Pn+1+ f n+1, (4.4)

un+1|0 = bn+1.

Finally, the projection step of the incremental scheme is written as

ρn+1 ûn+1− un+1

1t
+ ∇̂(Qn+1− Pn+1) = 0,

∇̂ · ûn+1 = 0, (4.5)

n · ûn+1|0 = n · bn+1,

wherePn+1 has been calculated in the pressure adaptation step of the current time level.

4.2. The Incremental Scheme for Variable Density Flows

The set of equations performing one entire time step of the incremental projection method
can be obtained as in the nonincremental method by writing the projection step in the form
of a Neumann problem for a Poisson-like equation and eliminating the end-of-step velocity.
A possible scheme, based on a semi-implicit stabilized treatment of the nonlinear term of
the mass conservation equation and a unconditionally stable treatment for the momentum
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equation of the viscous step, would lead to the following set of four uncoupled problems:

ρn+1− ρn

1t
+ un ·∇ρn+1+ 1

2
(∇ · un)ρn+1 = 0,

(4.6)
ρn+1|0in = an+1;

−∇̂ ·
(

1

ρn+1
∇̂Pn+1

)
= −∇̂ ·

(
1

σ n+1σ n
∇̂Qn

)
,

(4.7)
1

σ n+1

∂Pn+1

∂n

∣∣∣∣
0

= 1

σ n

∂Qn

∂n

∣∣∣∣
0

;

ρn+1un+1− σ n+1σ nun

1t
− µ∇2un+1+ (ρn+1un ·∇)un+1+ 1

2
[∇ · (ρn+1un)]un+1

= −∇Pn+1− σ
n+1

σ n
∇(Qn − Pn)+ f n+1, (4.8)

un+1|0 = bn+1;

−∇̂ ·
(

1

ρn+1
∇̂(Qn+1− Pn+1)

)
= −(1t)−1∇ · un+1,

(4.9)
∂(Qn+1− Pn+1)

∂n

∣∣∣∣
0

= 0.

4.3. Stability of the Incremental Projection Method

The proof of stability of the incremental projection method proceeds as does that of the
nonincremental method but takes into account in an essential way the pressure adaptation
equation (4.1). First, multiply this equation byPn+1 and integrate overÄ. Using the in-
tegration by parts and the Neumann boundary condition (4.2) we obtain, by the Schwartz
inequality, ∥∥∥∥∇̂Pn+1

σ n+1

∥∥∥∥2

0

=
(∇̂Pn+1

σ n+1
,
∇̂Qn

σ n

)
≤
∥∥∥∥∇̂Pn+1

σ n+1

∥∥∥∥
0

∥∥∥∥∇̂Qn

σ n

∥∥∥∥
0

,

from which it follows immediately that∥∥∥∥∇̂Pn+1

σ n+1

∥∥∥∥
0

≤
∥∥∥∥∇̂Qn

σ n

∥∥∥∥
0

.

Then, multiplying the momentum equation (4.4) by 21tun+1 and integrating overÄ, using
un|0 = 0, ∀un, we have

‖σ n+1un+1‖20+ ‖σ n+1un+1− σ nûn‖20− ‖σ nûn‖20
+ 21tµ‖∇un+1‖20 = −21t

∫
Ä

un+1 ·∇Pn+1.

Multiplying the momentum equation (4.5) of the projection step by(2∇̂Pn+1)/ρn+1 and
using∇̂ · ûn+1 = 0, we deduce that

− 2

1t

∫
Ä

∇̂Pn+1 · un+1+ 2
∫
Ä

∇̂Pn+1

ρn+1
· ∇̂(Qn+1− Pn+1) = 0,
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from which, using again the identity 2a(a− b) = a2+ (a− b)2− b2, we obtain

− 2

1t

∫
Ä

∇̂Pn+1 · un+1−
∥∥∥∥∇̂Pn+1

σ n+1

∥∥∥∥2

0

−
∥∥∥∥∇̂(Qn+1− Pn+1)

σ n+1

∥∥∥∥2

0

+
∥∥∥∥∇̂Qn+1

σ n+1

∥∥∥∥2

0

= 0.

Using the inequality established between(∇̂Pn+1)/σ n+1 and(∇̂Qn)/σ n we obtain

− 2

1t

∫
Ä

∇̂Pn+1 · un+1+
∥∥∥∥∇̂Qn+1

σ n+1

∥∥∥∥2

0

− ‖σ
n+1(ûn+1− un+1)‖20

(1t)2

=
∥∥∥∥∇̂Pn+1

σ n+1

∥∥∥∥2

0

≤
∥∥∥∥∇̂Qn

σ n

∥∥∥∥2

0

.

Finally, multiplying the first equation of the projection step (4.5), this time by 21t ûn+1,
and using∇̂ · ûn+1 = 0 andn · ûn+1|0 = 0, we obtain

‖σ n+1ûn+1‖20+ ‖σ n+1(ûn+1− un+1)‖20 = ‖σ n+1un+1‖20.

Adding now the three relations so obtained, the second one being multiplied by(1t)2, one
finally infers that

‖σ n+1ûn+1‖20+ (1t)2
∥∥∥∥∇̂Qn+1

σ n+1

∥∥∥∥2

0

+ 21tµ‖∇un+1‖20 ≤ ‖σ nûn‖20+ (1t)2
∥∥∥∥∇̂Qn

σ n

∥∥∥∥2

0

.

As a result we have proved:

PROPOSITION2. For any1t > 0, the solution(ρn, un, Pn), n = 1, 2, . . . , of the incre-
mental projection method(4.6)–(4.9) with f = 0 satisfies the stability estimate

‖σ n+1un+1‖20+ (1t)2
∥∥∥∥∇̂Qn+1

σ n+1

∥∥∥∥2

0

+ 2µ1t
n∑

k=0

‖∇uk+1‖20 ≤ ‖σ0u0‖20+ (1t)2
∥∥∥∥∇̂Q0

σ0

∥∥∥∥2

0

.

5. BDF SECOND-ORDER INCREMENTAL PROJECTION METHOD

The incremental projection method introduced in Sections 4.1 and 4.2 has a second-
order time-splitting error but to obtain a scheme of second-order accuracy in time it is
necessary to replace the two-level semi-implicit time integration algorithm used in the mass
conservation and viscous steps by a second-order accurate time stepping method. Following
our experience with the projection method for homogeneous incompressible flows [5, 8],
we adopt the three-level BDF method. To this aim, we introduce the linearly extrapolated
velocity field at the new time level by means of the definition

un+1
? = 2un − un−1. (5.1)

Then, we consider the second-order accurate BDF time integration of the mass conservation
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equation

3ρn+1− 4ρn + ρn−1

21t
+ un+1

? ·∇ρn+1+ 1

2
(∇ · un+1

? )ρn+1 = 0. (5.2)

Similarly, the momentum equation of the viscous step is integrated in time by the same
three-level BDF method, which solves the equation

σ n+1 3σ n+1un+1− 4σ nûn + σ n−1ûn−1

21t
− µ∇2un+1+ (ρn+1un+1

? ·∇)un+1

+ 1

2
[∇ · (ρn+1un+1

? )]un+1 = −∇Pn+1+ f n+1. (5.3)

Finally, the time advancement in the projection step is achieved by means of the equation

ρn+1 3ûn−1− 3un+1

21t
+ ∇̂(Qn+1− Pn+1) = 0. (5.4)

Once the projection step is recast into the form of an elliptic equation for the pressure
increment and the end-of-step velocityûn+1 is eliminated, the complete set of uncoupled
problems to be solved in the BDF incremental projection method assumes the form

3

21t
ρn+1+ un+1

? ·∇ρn+1+ 1

2
(∇ · un+1

? )ρn+1 = 4ρn − ρn−1

21t
,

(5.5)
ρn+1|0in = an+1;

−∇̂ ·
(

1

ρn+1
∇̂Pn+1

)
= −∇̂ ·

(
1

σ n+1σ n
∇̂Qn

)
,

(5.6)
1

σ n+1

∂Pn+1

∂n

∣∣∣∣
0

= 1

σ n

∂Qn

∂n

∣∣∣∣
0

;

3ρn+1

21t
un+1− µ∇2un+1+ (ρn+1un+1

? ·∇)un+1+ 1

2
[∇ · (ρn+1un+1

? )]un+1

= 2

1t
σ n+1σ nun − 1

21t
σ n+1σ n−1un−1+ f n+1− ∇Pn+1

(5.7)

−4σ n+1

3σ n
∇(Qn − Pn)+ σ n+1

3σ n−1
∇(Qn−1− Pn−1),

un+1|0 = bn+1;

−∇̂ ·
(

1

ρn+1
∇̂(Qn+1− Pn+1)

)
= − 3

21t
∇ · un+1,

(5.8)
∂(Qn+1− Pn+1)

∂n

∣∣∣∣
0

= 0;

6. NUMERICAL RESULTS

All the numerical results reported hereafter have been obtained usingP2–P1 finite
elements.
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6.1. Error Estimates

To verify the theoreticalO((1t)2) accuracy of the three-level BDF projection method,
we have tested it against the analytical solution in the unit circle|r| ≤ 1

ρ(r, t) = ρ1(r, θ − sint),

u(r, t) = (−yx̂+ xŷ) cost, (6.1)

P(r, t) = sinx siny sint,

whereρ1(r, θ) is an arbitrary function. In the tests, we usedρ1(r, α) = 2+ r cosα. The
fieldsρ(r, t) andu(r, t) satisfy the mass conservation equation identically andu(r, t) is
solenoidal. The momentum equation is satisfied by the body force defined by

f (r, t) =
(
(y sint − x cos2 t)ρ(r, t)+ cosx siny sint

−(x sint + y cos2 t)ρ(r, t)+ sinx cosy sint

)
. (6.2)

The computation have been performed for 0≤ t ≤ 1. The convergence results are plotted
in Fig. 1. We have measured the maximum in time of theL2 norm of the errors of all variables.
The mesh has been chosen fine enough so that the consistency error in space is significantly
smaller than that in time. The second-order convergence with respect to1t is verified in
the range 0.01≤ 1t ≤ 0.2.

FIG. 1. Maximum in time of the error in theL2 norm for different time steps.
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6.2. A Low Atwood Number Problem

As a first test case we have computed the development of a Rayleigh–Taylor instabil-
ity in the viscous regime. Our starting point is the problem documented by Tryggvason
[15]. This problem consists of two layers of fluid initially at rest in the gravity field in
Ä =]−d/2, d/2[×] − 2d, 2d[. The initial position of the perturbed interface isη(x) =
−0.1d cos(2πx/d). The heavy fluid is above and the density ratio is 3. so that the Atwood
number is 0.5 according to Tryggvason’s definition At= (ρmax− ρmin)/(ρmax+ ρmin). The
transition between the two fluids is regularized by means of the law

ρ(x, y, t = 0)

ρmin
= 2+ tanh

(
y− η(x)

0.01d

)
.

The governing equations are made dimensionless by using the following references:ρmin

for density,d for length, andd1/2/g1/2 for time, whereg is the gravity field, so that the
reference velocity isd1/2g1/2, and the Reynolds number is defined by Re= ρmind3/2g1/2/µ.
Assuming the symmetry of the initial condition is maintained during the time evolution,
the computational domain has been restricted to ]0, d/2[×] − 2d, 2d[. A no-slip condition
is enforced at the bottom and top walls while symmetry is imposed on the two vertical
sides.

The time evolution of the interface of the density field for Re= 1000 is plotted in Fig. 2
at times 1, 1.5, 1.75, 2, 2.25, 2.5 in the time scale of Tryggvason which is related to ours by
tTryg = t

√
At. We show the computation on two grids with 21,051 and 30,189P2 nodes to

give an idea of the convergence with respect to the spatial discretization. We have chosen
1tTryg = 5× 10−4. The solutions on the two meshes are consistent in that they show similar
structures and differ only in fine details at large time.

To further assess the sensitivity of the method to spatial resolution and to verify that the
artificial viscosity is much smaller than the physical viscosity we have solved the same
problem for Re= 5000. In Fig. 3, we show the evolution of the interface computed using
two meshes composed of 30,189 and 49,577P2 nodes, respectively. First, by comparing
the solutions obtained for Re= 1000 and Re= 5000 on the grid composed of 30,189P2

nodes, we clearly see that the artificial viscosity is much smaller than the physical one,
since the two sets of figures are significantly different. Second, by comparing the solutions
at Re= 5000 on the two grids, we see that they are in very good agreement in the early
stage of the time evolution(t ≤ 1.75). Some noticeable differences occur at later times and
consist in the development of structures within the main vortex that are more complex on
the fine mesh than on the coarse one. When comparing the solutions att = 2.5, we observe
some disagreement in the shape of the roll-up of the rising bubble, but fair agreement in
the overall shape (external and internal) of the falling bubble. A tentative explanation of
the delay in the formation of the roll-up of the rising bubble is given at the end of the next
section.

We compare now the viscous solutions, Re= 1000 and Re= 5000, with the inviscid
one computed in [15]. In Fig. 4, we show the position of the interface of the rising and
falling bubble as a function of time. The solid line is the inviscid results from the finest
mesh in [15, Fig. 6(a)]. The positions predicted by the projection method for Re= 1000 and
Re= 5000 are almost coincident and are in fair agreement with the reference values. We
notice though that the velocity of the falling bubble is somewhat higher in our calculations
than in [15]. The computational domain used in [15] isÄ =]−d/2, d/2[×] − d, d[; as a
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FIG. 2. Re= 1000; density ratio 3. The grid is composed of 21,051P2 nodes (top) and 30,189P2 nodes
(bottom). The initial amplitude is 10% of the wavelength. The interface is shown at times 1, 1.5, 1.75, 2, 2.25, and
2.5 (density contours 1.4≤ ρ ≤ 1.6).

result, the asymptotic velocity of the falling bubble in the inviscid simulation is reduced
because of the presence of the lower no-through flow boundary.

Coming to the comparison of the vortex structure, there is satisfactory agreement of
the global characteristics of the flow between the viscous solutions and the inviscid one
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FIG. 3. Re= 5000; density ratio 3. The grid is composed of 30,189P2 nodes (top) and 49,577P2 nodes
(bottom). The initial amplitude is 10% of the wavelength. The interface is shown at times 1, 1.5, 1.75, 2, 2.25, and
2.5 (density contours 1.4≤ ρ ≤ 1.6).

[15, Fig. 4], especially in the early stage. Note however that the roll-up of the the main
vortex in the present calculation does not develop since the singularity at the center of the
vortex is removed by viscous dissipation.

All these results indicate that an accurate and detailed prediction of such a flow fort ≥ 1.5
and Re≥ 5000 is a difficult task, at least for the proposed projection method. In any case,
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FIG. 4. Position of rising and falling bubbles versus time. Solid line: inviscid computations from Tryggvason
[15]. Symbols denote results by projection method:4: Re= 1000;×: Re= 5000.

note that our Re= 5000 solution is so different from the inviscid one reported in [15] that
we face the question of whether the infinite Reynolds limit of the viscous solution should
be equal to the inviscid solution. In this respect, we recall that “Birkhoff has speculated that
the initial-value problem [for inviscid stratified flows] might be ill-posed [as a consequence
of the fact that] the growth rate of an infinitely small unstable wave is proportional to the
square root of its wave number,” as reported by Tryggvason [15]. As a result, the authors’
knowledge seems to leave the question of the existence of a smooth inviscid solution for
large times open.

6.3. A High Atwood Number Problem

To complete the set of comparisons, we have run the test case described in [1]. The
geometry is the same as in the previous test case. The density ratio is 7, so At= 0.75
(corresponding to the value 0.875 using the definition of the Atwood number in [1]). The
perturbation of the interface isη(x) = −0.01d cos(2πx/d) and the transition between the
two fluids is regularized by means of the following law:

ρ0(x, y)

ρmin
= 4+ 3 tanh

(
y− η(x)

0.01d

)
.

The location of the interface at times 1, 1.5, 2, 2.5, 3, 3.5, 3.75, 4, 4.25 is shown in Fig. 5
on two grids composed of 30,189 and 49,577P2 nodes, respectively. From the qualitative
point of view, the two solutions exhibits the same structures. The main difference consists
in a small time delay in the roll-up of the rising bubble that prompts different interactions
between the two vortices at large times. On the coarse mesh, there is a strong interaction,
whereas on the fine grid the two vortices develop almost independently. Note that in both
cases the two vortices seem to have self-similar behaviors in the early stages of their
development. By inspecting the two solutions at time 1.5, we see that more Fourier modes
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FIG. 5. Re= 1000; density ratio 7. The grid is composed of 30,189P2 nodes (top) and 49,577P2 nodes
(bottom). The initial amplitude is 1% of the wavelength. The interface is shown at times 1, 1.5, 2, 2.5, 3, 3.5, 3.75,
4, and 4.25 (density contours 2≤ ρ ≤ 4.).

are active on the fine mesh than on the coarse one. This can be understood in the light of
the aforementioned Birkhoff’s conjecture. In fact, in the early stage of the evolution the
viscous effects are negligible and small scale perturbations are produced from the perturbed
initial data by nonlinear interactions. The finer the mesh, the larger the spectrum of available
unstable modes. By virtue of the linear stability argument of Birkhoff, the smaller the scale
of the unstable modes the higher their growth rate. Because our numerical scheme has
negligible artificial damping, small unstable modes are rapidly amplified. As a result, at
t = 1.5 we distinguish four structures on the interface for the coarse grid whereas five
are present for the fine mesh. Note that, as observed by Tryggvason [15, p. 268], some
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of these vortices merge into one big vortex. Actually, three vortices out of four merge on
the coarse mesh whereas four out of five merge on the fine grid. This mechanism may
explain the anticipated formation of the secondary vortex on the coarse mesh. Note also
that this argument can also explain the delay in the formation of the secondary vortex that
we observed on the previous test case when comparing the coarse and the fine solution at
Re= 5000.

We have chosen this test with the hope of reproducing the results of [1]. We must admit that
our solution and that of [1] are quite different. The main reason for this difference is that in
our simulation small unstable modes develop at the early stage of the time evolution whereas
these modes seem absent in the computation reported in [1]. It is likely that the completely
different treatments of the nonlinear inertial terms by the proposed unconditionally stable
finite element method and by the referred Godunov-based approach are at the origin of the
discrepancy. The clarification of this issue is left for future investigations.

7. CONCLUSIONS

In this work, we have extended the incremental projection method to the case of incom-
pressible viscous flows with nonuniform density. We have recast the momentum equation
in a new manner to guarantee that the spatial discretization errors associated with the sat-
isfaction of the mass conservation cannot affect the balance of the kinetic energy of the
fluid. The proposed form allows for developing unconditionally stable projection schemes
with the condition of incompressibility replaced by an elliptic equation for pressure, with a
variable coefficient depending on the density. A second-order accurate projection scheme
has been obtained which is based on performing two projections per time step and using a
three level BDF scheme for the time integration of the mass conservation and momentum
equations. The spatial approximation is performed by means of Lagrangian finite elements
with P2 interpolation for density and velocity andP1 interpolation for pressure.

To verify the correctness of the method, it has been applied to two test cases previously
considered in the literature. These problems consist in simulating the evolution of the
Rayleigh–Taylor instability of the interface between fluids of different densities. While for
a low density ratio (Atwood number= 0.5) the results of the new projection method in the
range Re≈ 1000 are in agreement with the inviscid computations [15] in the early stages of
vortex formation and roll-up, for a high density ratio (Atwood number= 0.75) substantial
differences are found with the results provided by the finite difference projection method
of Bell and Marcus [1]. The analysis of spatial convergence conducted for the test problem
at the higher Atwood number indicates that the proposed method is accurate and reliable
enough for considering the computed solutions worth of attention for further comparisons.
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